Skip to content
GitLab
Projects Groups Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • V vedaseg
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 6
    • Issues 6
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 1
    • Merge requests 1
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Infrastructure Registry
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Media-Smart
  • vedaseg
  • Issues
  • #57
Closed
Open
Issue created Nov 25, 2021 by Masanori ITOH@thatsdone

AttributeError: module 'albumentations.augmentations.functional' has no attribute 'scale'

DESCRIPTION

vedaseg train fails getting AttributeError: module 'albumentations.augmentations.functional' has no attribute 'scale'.

REPRODUCE PROCEDURE

Use current PiPy version of albumentation and execute training. I'm using the following versions of software stacks.

docker image: pytorch/pytorch:1.7.1-cuda11.0-cudnn8-devel torch: 1.7.1 torchvision: 0.8.2 conda: 4.10.3 Python: 3.8.10 conda origin imgaug: 0.4.0 albumentation: 1.1.0 PyPi current version

ANALYSYS and SUGGESTED RESOLUTION

It looks like scale() method in albumentations.augmentations.functional does not exist in albumentations 1.1.0 any longer. The method exists at least until 0.5.1, and after downgrading albumentations train process worked.

Thus, I think nowadays it's better to write albumentations version in requirements.txt:

albumentations==0.5.1

rather than:

albumentations>=0.4.1

LOG

The below is an exerption from the stack trace I got.

Original Traceback (most recent call last):
  File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 198, in _worker_loop
    data = fetcher.fetch(index)
  File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
    data = [self.dataset[idx] for idx in possibly_batched_index]
  File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp>
    data = [self.dataset[idx] for idx in possibly_batched_index]
  File "/work/vedaseg/tools/../vedaseg/datasets/voc.py", line 39, in __getitem__
    image, mask = self.process(img, [mask])
  File "/work/vedaseg/tools/../vedaseg/datasets/base.py", line 16, in process
    augmented = self.transform(image=image, masks=masks)
  File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/albumentations/core/composition.py", line 210, in __call__
    data = t(force_apply=force_apply, **data)
  File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/albumentations/core/transforms_interface.py", line 97, in __call__
    return self.apply_with_params(params, **kwargs)
  File "/root/miniconda3/envs/py38/lib/python3.8/site-packages/albumentations/core/transforms_interface.py", line 112, in apply_with_params
    res[key] = target_function(arg, **dict(params, **target_dependencies))
  File "/work/vedaseg/tools/../vedaseg/transforms/transforms.py", line 22, in apply
    return F.scale(image, scale, interpolation=self.interpolation)
AttributeError: module 'albumentations.augmentations.functional' has no attribute 'scale'
Assignee
Assign to
Time tracking