README-it.md
0 → 100644
+ 1838
- 0
*[English](README.md) ∙ [日本語](README-ja.md) ∙ [简体中文](README-zh-Hans.md) ∙ [繁體中文](README-zh-TW.md) | [العَرَبِيَّة](https://github.com/donnemartin/system-design-primer/issues/170) ∙ [বাংলা](https://github.com/donnemartin/system-design-primer/issues/220) ∙ [Português do Brasil](https://github.com/donnemartin/system-design-primer/issues/40) ∙ [Deutsch](https://github.com/donnemartin/system-design-primer/issues/186) ∙ [ελληνικά](https://github.com/donnemartin/system-design-primer/issues/130) ∙ [עברית](https://github.com/donnemartin/system-design-primer/issues/272) ∙ [Italiano](README-it.md) ∙ [한국어](https://github.com/donnemartin/system-design-primer/issues/102) ∙ [فارسی](https://github.com/donnemartin/system-design-primer/issues/110) ∙ [Polski](https://github.com/donnemartin/system-design-primer/issues/68) ∙ [русский язык](https://github.com/donnemartin/system-design-primer/issues/87) ∙ [Español](https://github.com/donnemartin/system-design-primer/issues/136) ∙ [ภาษาไทย](https://github.com/donnemartin/system-design-primer/issues/187) ∙ [Türkçe](https://github.com/donnemartin/system-design-primer/issues/39) ∙ [tiếng Việt](https://github.com/donnemartin/system-design-primer/issues/127) ∙ [Français](https://github.com/donnemartin/system-design-primer/issues/250) | [Add Translation](https://github.com/donnemartin/system-design-primer/issues/28)*
A service is **scalable** if it results in increased **performance** in a manner proportional to resources added. Generally, increasing performance means serving more units of work, but it can also be to handle larger units of work, such as when datasets grow.<sup><a href=http://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html>1</a></sup>
This approach is seen in systems such as memcached. Weak consistency works well in real time use cases such as VoIP, video chat, and realtime multiplayer games. For example, if you are on a phone call and lose reception for a few seconds, when you regain connection you do not hear what was spoken during connection loss.
DNS is hierarchical, with a few authoritative servers at the top level. Your router or ISP provides information about which DNS server(s) to contact when doing a lookup. Lower level DNS servers cache mappings, which could become stale due to DNS propagation delays. DNS results can also be cached by your browser or OS for a certain period of time, determined by the [time to live (TTL)](https://en.wikipedia.org/wiki/Time_to_live).
A content delivery network (CDN) is a globally distributed network of proxy servers, serving content from locations closer to the user. Generally, static files such as HTML/CSS/JS, photos, and videos are served from CDN, although some CDNs such as Amazon's CloudFront support dynamic content. The site's DNS resolution will tell clients which server to contact.
Push CDNs receive new content whenever changes occur on your server. You take full responsibility for providing content, uploading directly to the CDN and rewriting URLs to point to the CDN. You can configure when content expires and when it is updated. Content is uploaded only when it is new or changed, minimizing traffic, but maximizing storage.
Layer 4 load balancers look at info at the [transport layer](#communication) to decide how to distribute requests. Generally, this involves the source, destination IP addresses, and ports in the header, but not the contents of the packet. Layer 4 load balancers forward network packets to and from the upstream server, performing [Network Address Translation (NAT)](https://www.nginx.com/resources/glossary/layer-4-load-balancing/).
Layer 7 load balancers look at the [application layer](#communication) to decide how to distribute requests. This can involve contents of the header, message, and cookies. Layer 7 load balancers terminate network traffic, reads the message, makes a load-balancing decision, then opens a connection to the selected server. For example, a layer 7 load balancer can direct video traffic to servers that host videos while directing more sensitive user billing traffic to security-hardened servers.
Load balancers can also help with horizontal scaling, improving performance and availability. Scaling out using commodity machines is more cost efficient and results in higher availability than scaling up a single server on more expensive hardware, called **Vertical Scaling**. It is also easier to hire for talent working on commodity hardware than it is for specialized enterprise systems.
Separating out the web layer from the application layer (also known as platform layer) allows you to scale and configure both layers independently. Adding a new API results in adding application servers without necessarily adding additional web servers. The **single responsibility principle** advocates for small and autonomous services that work together. Small teams with small services can plan more aggressively for rapid growth.
Related to this discussion are [microservices](https://en.wikipedia.org/wiki/Microservices), which can be described as a suite of independently deployable, small, modular services. Each service runs a unique process and communicates through a well-defined, lightweight mechanism to serve a business goal. <sup><a href=https://smartbear.com/learn/api-design/what-are-microservices>1</a></sup>
Systems such as [Consul](https://www.consul.io/docs/index.html), [Etcd](https://coreos.com/etcd/docs/latest), and [Zookeeper](http://www.slideshare.net/sauravhaloi/introduction-to-apache-zookeeper) can help services find each other by keeping track of registered names, addresses, and ports. [Health checks](https://www.consul.io/intro/getting-started/checks.html) help verify service integrity and are often done using an [HTTP](#hypertext-transfer-protocol-http) endpoint. Both Consul and Etcd have a built in [key-value store](#key-value-store) that can be useful for storing config values and other shared data.
The master serves reads and writes, replicating writes to one or more slaves, which serve only reads. Slaves can also replicate to additional slaves in a tree-like fashion. If the master goes offline, the system can continue to operate in read-only mode until a slave is promoted to a master or a new master is provisioned.
Federation (or functional partitioning) splits up databases by function. For example, instead of a single, monolithic database, you could have three databases: **forums**, **users**, and **products**, resulting in less read and write traffic to each database and therefore less replication lag. Smaller databases result in more data that can fit in memory, which in turn results in more cache hits due to improved cache locality. With no single central master serializing writes you can write in parallel, increasing throughput.
Similar to the advantages of [federation](#federation), sharding results in less read and write traffic, less replication, and more cache hits. Index size is also reduced, which generally improves performance with faster queries. If one shard goes down, the other shards are still operational, although you'll want to add some form of replication to avoid data loss. Like federation, there is no single central master serializing writes, allowing you to write in parallel with increased throughput.
Denormalization attempts to improve read performance at the expense of some write performance. Redundant copies of the data are written in multiple tables to avoid expensive joins. Some RDBMS such as [PostgreSQL](https://en.wikipedia.org/wiki/PostgreSQL) and Oracle support [materialized views](https://en.wikipedia.org/wiki/Materialized_view) which handle the work of storing redundant information and keeping redundant copies consistent.
NoSQL is a collection of data items represented in a **key-value store**, **document store**, **wide column store**, or a **graph database**. Data is denormalized, and joins are generally done in the application code. Most NoSQL stores lack true ACID transactions and favor [eventual consistency](#eventual-consistency).
A key-value store generally allows for O(1) reads and writes and is often backed by memory or SSD. Data stores can maintain keys in [lexicographic order](https://en.wikipedia.org/wiki/Lexicographical_order), allowing efficient retrieval of key ranges. Key-value stores can allow for storing of metadata with a value.
A document store is centered around documents (XML, JSON, binary, etc), where a document stores all information for a given object. Document stores provide APIs or a query language to query based on the internal structure of the document itself. *Note, many key-value stores include features for working with a value's metadata, blurring the lines between these two storage types.*
Some document stores like [MongoDB](https://www.mongodb.com/mongodb-architecture) and [CouchDB](https://blog.couchdb.org/2016/08/01/couchdb-2-0-architecture/) also provide a SQL-like language to perform complex queries. [DynamoDB](http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf) supports both key-values and documents.
A wide column store's basic unit of data is a column (name/value pair). A column can be grouped in column families (analogous to a SQL table). Super column families further group column families. You can access each column independently with a row key, and columns with the same row key form a row. Each value contains a timestamp for versioning and for conflict resolution.
Google introduced [Bigtable](http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/chang06bigtable.pdf) as the first wide column store, which influenced the open-source [HBase](https://www.edureka.co/blog/hbase-architecture/) often-used in the Hadoop ecosystem, and [Cassandra](http://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archIntro.html) from Facebook. Stores such as BigTable, HBase, and Cassandra maintain keys in lexicographic order, allowing efficient retrieval of selective key ranges.
Graphs databases offer high performance for data models with complex relationships, such as a social network. They are relatively new and are not yet widely-used; it might be more difficult to find development tools and resources. Many graphs can only be accessed with [REST APIs](#representational-state-transfer-rest).
In-memory caches such as Memcached and Redis are key-value stores between your application and your data storage. Since the data is held in RAM, it is much faster than typical databases where data is stored on disk. RAM is more limited than disk, so [cache invalidation](https://en.wikipedia.org/wiki/Cache_algorithms) algorithms such as [least recently used (LRU)](https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)) can help invalidate 'cold' entries and keep 'hot' data in RAM.
The user is not blocked and the job is processed in the background. During this time, the client might optionally do a small amount of processing to make it seem like the task has completed. For example, if posting a tweet, the tweet could be instantly posted to your timeline, but it could take some time before your tweet is actually delivered to all of your followers.
If queues start to grow significantly, the queue size can become larger than memory, resulting in cache misses, disk reads, and even slower performance. [Back pressure](http://mechanical-sympathy.blogspot.com/2012/05/apply-back-pressure-when-overloaded.html) can help by limiting the queue size, thereby maintaining a high throughput rate and good response times for jobs already in the queue. Once the queue fills up, clients get a server busy or HTTP 503 status code to try again later. Clients can retry the request at a later time, perhaps with [exponential backoff](https://en.wikipedia.org/wiki/Exponential_backoff).
HTTP is a method for encoding and transporting data between a client and a server. It is a request/response protocol: clients issue requests and servers issue responses with relevant content and completion status info about the request. HTTP is self-contained, allowing requests and responses to flow through many intermediate routers and servers that perform load balancing, caching, encryption, and compression.
TCP is a connection-oriented protocol over an [IP network](https://en.wikipedia.org/wiki/Internet_Protocol). Connection is established and terminated using a [handshake](https://en.wikipedia.org/wiki/Handshaking). All packets sent are guaranteed to reach the destination in the original order and without corruption through:
If the sender does not receive a correct response, it will resend the packets. If there are multiple timeouts, the connection is dropped. TCP also implements [flow control](https://en.wikipedia.org/wiki/Flow_control_(data)) and [congestion control](https://en.wikipedia.org/wiki/Network_congestion#Congestion_control). These guarantees cause delays and generally result in less efficient transmission than UDP.
To ensure high throughput, web servers can keep a large number of TCP connections open, resulting in high memory usage. It can be expensive to have a large number of open connections between web server threads and say, a [memcached](https://memcached.org/) server. [Connection pooling](https://en.wikipedia.org/wiki/Connection_pool) can help in addition to switching to UDP where applicable.
In an RPC, a client causes a procedure to execute on a different address space, usually a remote server. The procedure is coded as if it were a local procedure call, abstracting away the details of how to communicate with the server from the client program. Remote calls are usually slower and less reliable than local calls so it is helpful to distinguish RPC calls from local calls. Popular RPC frameworks include [Protobuf](https://developers.google.com/protocol-buffers/), [Thrift](https://thrift.apache.org/), and [Avro](https://avro.apache.org/docs/current/).
REST is an architectural style enforcing a client/server model where the client acts on a set of resources managed by the server. The server provides a representation of resources and actions that can either manipulate or get a new representation of resources. All communication must be stateless and cacheable.
REST is focused on exposing data. It minimizes the coupling between client/server and is often used for public HTTP APIs. REST uses a more generic and uniform method of exposing resources through URIs, [representation through headers](https://github.com/for-GET/know-your-http-well/blob/master/headers.md), and actions through verbs such as GET, POST, PUT, DELETE, and PATCH. Being stateless, REST is great for horizontal scaling and partitioning.
* With REST being focused on exposing data, it might not be a good fit if resources are not naturally organized or accessed in a simple hierarchy. For example, returning all updated records from the past hour matching a particular set of events is not easily expressed as a path. With REST, it is likely to be implemented with a combination of URI path, query parameters, and possibly the request body.
* Fetching complicated resources with nested hierarchies requires multiple round trips between the client and server to render single views, e.g. fetching content of a blog entry and the comments on that entry. For mobile applications operating in variable network conditions, these multiple roundtrips are highly undesirable.
You'll sometimes be asked to do 'back-of-the-envelope' estimates. For example, you might need to determine how long it will take to generate 100 image thumbnails from disk or how much memory a data structure will take. The **Powers of two table** and **Latency numbers every programmer should know** are handy references.
| Design a search engine like Google | [queue.acm.org](http://queue.acm.org/detail.cfm?id=988407)<br/>[stackexchange.com](http://programmers.stackexchange.com/questions/38324/interview-question-how-would-you-implement-google-search)<br/>[ardendertat.com](http://www.ardendertat.com/2012/01/11/implementing-search-engines/)<br/>[stanford.edu](http://infolab.stanford.edu/~backrub/google.html) |
| Design the Facebook news feed function | [quora.com](http://www.quora.com/What-are-best-practices-for-building-something-like-a-News-Feed)<br/>[quora.com](http://www.quora.com/Activity-Streams/What-are-the-scaling-issues-to-keep-in-mind-while-developing-a-social-network-feed)<br/>[slideshare.net](http://www.slideshare.net/danmckinley/etsy-activity-feeds-architecture) |
| Design a graph search function like Facebook's | [facebook.com](https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-out-the-infrastructure-for-graph-search/10151347573598920)<br/>[facebook.com](https://www.facebook.com/notes/facebook-engineering/under-the-hood-indexing-and-ranking-in-graph-search/10151361720763920)<br/>[facebook.com](https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-natural-language-interface-of-graph-search/10151432733048920) |
| Facebook | [Scaling memcached at Facebook](https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/key-value/fb-memcached-nsdi-2013.pdf)<br/>[TAO: Facebook’s distributed data store for the social graph](https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-atc-2013.pdf)<br/>[Facebook’s photo storage](https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf)<br/>[How Facebook Live Streams To 800,000 Simultaneous Viewers](http://highscalability.com/blog/2016/6/27/how-facebook-live-streams-to-800000-simultaneous-viewers.html) |
| Pinterest | [From 0 To 10s of billions of page views a month](http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html)<br/>[18 million visitors, 10x growth, 12 employees](http://highscalability.com/blog/2012/5/21/pinterest-architecture-update-18-million-visitors-10x-growth.html) |
| Twitter | [Making Twitter 10000 percent faster](http://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster)<br/>[Storing 250 million tweets a day using MySQL](http://highscalability.com/blog/2011/12/19/how-twitter-stores-250-million-tweets-a-day-using-mysql.html)<br/>[150M active users, 300K QPS, a 22 MB/S firehose](http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html)<br/>[Timelines at scale](https://www.infoq.com/presentations/Twitter-Timeline-Scalability)<br/>[Big and small data at Twitter](https://www.youtube.com/watch?v=5cKTP36HVgI)<br/>[Operations at Twitter: scaling beyond 100 million users](https://www.youtube.com/watch?v=z8LU0Cj6BOU)<br/>[How Twitter Handles 3,000 Images Per Second](http://highscalability.com/blog/2016/4/20/how-twitter-handles-3000-images-per-second.html) |
| Uber | [How Uber scales their real-time market platform](http://highscalability.com/blog/2015/9/14/how-uber-scales-their-real-time-market-platform.html)<br/>[Lessons Learned From Scaling Uber To 2000 Engineers, 1000 Services, And 8000 Git Repositories](http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html) |